Noncommutative geometric spaces with boundary: Spectral action
نویسندگان
چکیده
منابع مشابه
Noncommutative Spectral Decomposition with Quasideterminant
We develop a noncommutative analogue of the spectral decomposition with the quasideterminant defined by I. Gelfand and V. Retakh. In this theory, by introducing a noncommutative Lagrange interpolating polynomial and combining a noncommutative CayleyHamilton’s theorem and an identity given by a Vandermonde-like quasideterminant, we can systematically calculate a function of a matrix even if it h...
متن کاملThe Spectral Action Principle in Noncommutative Geometry and the Superstring
A supersymmetric theory in two-dimensions has enough data to define a noncommutative space thus making it possible to use all tools of noncommutative geometry. In particular, we apply this to the N = 1 supersymmetric non-linear sigma model and derive an expression for the generalized loop space Dirac operator, in presence of a general background, using canonical quantization. The spectral actio...
متن کاملOn Noncommutative Geometric Regularisation
Studies in string theory and in quantum gravity suggest the existence of a finite lower bound to the possible resolution of lengths which, quantum theoretically, takes the form of a minimal uncertainty in positions ∆x0. A finite minimal uncertainty in momenta ∆p0 has been motivated from the absence of plane waves on generic curved spaces. Both effects can be described as small noncommutative ge...
متن کاملThe Noncommutative Choquet Boundary
Let S be an operator system – a self-adjoint linear subspace of a unital C∗-algebra A such that 1 ∈ S and A = C∗(S) is generated by S. A boundary representation for S is an irreducible representation π of C∗(S) on a Hilbert space with the property that π S has a unique completely positive extension to C∗(S). The set ∂S of all (unitary equivalence classes of) boundary representations is the nonc...
متن کاملNoncommutative Lp spaces, Operator spaces and Applications
Overview of the field. NoncommutativeLp-spaces are at the heart of this conference. These spaces have a long history going back to pioneering works by von Neumann, Dixmier and Segal. They are the analogues of the classical Lebesgue spaces of pintegrable functions, where now functions are replaced by operators. These spaces have been investigated for operator algebras with a trace, and then arou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2011
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2010.10.002